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Abstract. In this paper, we present a distributed computing method, namely 
Sequential Bayesian Learning for modular neural networks. The method is 
based on the idea of sequential Bayesian decision analysis to gradually improv-
ing the decision accuracy by collecting more information derived from a series 
of experiments and determine the combination weights of each sub-network. 
One of the advantages of this method is it emulates humans� problems process-
ing mode effectively and makes uses of old information while new data infor-
mation is acquired at each stage. The results of experiments on eight regression 
problems show that the method is superior to simple averaging on those hard-
to-learn problems. 

1   Introduction 
Modular neural network is an effective kind of connectionism models that consists of 
a group of sub-networks combined to solve complex problems. It often produces 
superior results than single well-trained neural network does. It has been a hot topic 
in many areas such as pattern recognition and classification, image processing, sys-
tem identification, language/speech processing, control, modeling, target detec-
tion/recognition, fault diagnosis, etc. 

Here, we shall use the term modularity in the widest meaning, that is, modular 
neural network is a system composed of a group of neural networks, which are inde-
pendent, inter-connected, co-operative in structure level or in function level. The 
basic unit in this system is a module. Therefore, in the literature the paradigms such 
as multiple neural networks, hybrid neural networks, distributed neural networks and 
committee machine could be unified under the aforementioned framework. In this 
meaning, we give corresponding architecture and description: 

MNN=<X, C, SN, IU, Y>   (1) 

Where, X nRD ⊆∈ , is the input vector; C represents a classifier whose function 
is to decompose input space or I/O space in the system; SN represents a set of sub-

nets K
iiNet 1}{ = ; IU represents the integrating unit which performs adaptive combina-

tion of modules; mREY ⊆∈ , is the output vector. The corresponding network 
architecture is illustrated in Fig.1 

In addition, if the classifier doesn�t work (i.e. the input or I/O space is classified 
into one class), the corresponding modular neural network is named as �neural net-
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work ensemble�; If any Neti is composed of some sub-nets, the corresponding modu-
lar neural network should be named as �hierarchical modular neural networks�. In 
this paper, we focus on the �neural network ensemble�. 

In the past few years, one of the research directions on modular neural network is 
how to combine the outputs of the component networks to form the output of the 
entire system that has the best performance. In the context of regression problems, 
diverse linear combination methods, such as simple averaging [1], MLS-OLCs [2], 
fuzzy integral [3], etc, are presented to integrate the component networks. Whatever 
any specific linear combination method is used, if K neural networks arc selected to 
form an entire system, the outputs of the component networks are then combined 
through weighted sum where a combination weight ),...,2,1( Kiwi =  is assigned to 

the i-th component network. Consequently, the output vector y of the entire system 

is determined according to Eq. (1) where iy  is the output vector of the i-th compo-

nent network. 
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For simplicity, here we assume that each component network has only one output 

variable, i.e. the function to be approximated is RRf m →: . It can be easily gener-
alized to the situations where each component network has more than one output 
variable. 

Note that the combination weights are different from the connection weights be-
longing to a specific component network. The former are inter-network connection 
coefficients in the whole system while the latter are intra-network connection coeffi-
cients in the corresponding component network. Particularly, the sum of the combina-
tion weights are constrained to unity and each combination weight is set to be posi-
tive, that is, 
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0≥iw  (4) 

 

Fig. 1. Network Architecture. 


